

Problems on spline interpolation

1) Construct the natural quadratic spline using the given data for the function y = f(x)and with its help find the approximate values for f(0,5) and f(1,5).

x_i	0	1	2	3	4
Уi	1,2	1,3	1,6	1,2	0,6

Answer: $f(0,5) \approx 1,2125$; $f(1,5) \approx 0,4875$.

2) Construct the natural cubic spline using the data for the function y = f(x) and with its help find the approximate values for f(0,5) and f(1,7).

x_i	0,1	1	1,5	2	2,5
y_i	-0,7	0	1	0,8	1,2

Answer: $f(0,5) \approx -0.5993$; $f(1,7) \approx 0.9922$.

- 3) The function x³-1/x²+1 is to be approximated in points 1, 1,2, 1,4, 1,6, 1,8, 2 with the help of a natural interpolation spline of: a) first degree; b) second degree; c) third degree. What is the approximation in point 1,5?
 Answer: c) *l*=(0, -0,2146, -0,2712, -0,2523, -0,2963, 0) and *f*(1,5) ≈ 0,7307
- 4) Write a computer program for the interpolation of a random function with an interpolation spline of a) second degree; b) of third degree, using a table for the function in a given set of points from its domain of definition.
- 5) The following table with values for the function y = f(x) is given:

x_i	3,0	4,5	7,0	9,0
y _i	2,5	1,0	2,5	0,5

Construct a cubic spline with boundary conditions:

a)
$$S_3''(3) = \gamma_1 = 0; \quad S_3''(9) = \gamma_2 = -0,5;$$

b) $S_3''(3) = \gamma_1 = -0,5; \quad S_3''(9) = \gamma_2 = -1,5$.

With the help of the splines found calculate the approximate values of the function in points: $z_1 = 4$ and $z_2 = 5$.

Author: Snezhana Gocheva-Ilieva, <u>snow@uni-plovdiv.bg</u>